
Noname manuscript No.
(will be inserted by the editor)

A Bayesian Tracker for Synthesizing Mobile Robot
Behaviour from Demonstration

Stéphane Magnenat · Francis Colas

the date of receipt and acceptance should be inserted later

Abstract Programming robots often involves expert

knowledge in both the robot itself and the task to ex-
ecute. An alternative to direct programming is for a

human to show examples of the task execution and have

the robot perform the task based on these examples, in a

scheme known as learning or programming from demon-

stration. We propose and study a generic and simple

learning-from-demonstration framework. Our approach

is to combine the demonstrated commands according to

the similarity between the demonstrated sensory trajec-

tories and the current replay trajectory. This tracking

is solely performed based on sensor values and time and

completely dispenses with the usually expensive step of

precomputing an internal model of the task. We analyse

the behaviour of the proposed model in several simulated

conditions and test it on two different robotic platforms.

We show that it can reproduce different capabilities with

a limited number of meta parameters.

Keywords programming by demonstration, learning

from demonstration, non-parametric Bayesian model,

teach and repeat, online tracking

1 Introduction

A large variety of mobile robots has blossomed recently,

made possible by progresses in energy storage, electron-

ics, processing speed, and other technological improve-

S. Magnenat
Game Technology Center, Computer Science Dpt, ETH Zürich

F. Colas
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy,
France
E-mail: francis.colas@inria.fr
Corresponding author

ments. We have seen these robots performing explo-

ration and navigation tasks in different environments,
and demonstrating impressive autonomy. However, the

actual programming of complex behaviours remains te-

dious, in particular when physical interaction takes place

between the robot and its environment. This process

often involves writing and tuning complicated state ma-

chines and requires a lot of expert engineering resources.

Machine learning, which aims at specifying complex

algorithms by leveraging data instead of just expert

knowledge, proposes an alternative path. It appears

especially useful for robotic tasks, as these often deal

with high-dimensional input and output spaces while

relying on a lot of contingent parameter values. The

specification of robot behaviours from recorded train-

ing data forms the field of programming by or learning

from demonstration as described in the survey from

Argall et al. (2009) or in chapter 74 of the Handbook of

Robotics by Siciliano and Khatib (2016).

While this field ultimately aims at finding a solution

to program any robotic task on a large variety of robotic

platforms, currently the choice of the approach mostly

depends on both the platform and the kind of tasks to

be executed. Research has explored complex problems in

a variety of directions. In particular, many recent works

tackle the transfer of a skill from one space to another, or

the teaching of robots with a high-dimensional actuator

space. However, solving these problems requires expert

knowledge to select, tune, and deploy the right algo-

rithm in a given field and for a given task. Often, these

works do not propose a unified approach. In this paper,

we are interested in relatively simple robots that can be

tele-operated, and hence we do not explore the problem

of the difference in representation between the demon-

stration and replay data. Moreover, we do not explore

the problem of explicit dimensionality reduction in the

2 Stéphane Magnenat, Francis Colas

sensor or actuator space. This excludes high-dimensional

systems such as humanoids.

Specifically, the present work aims at understand-

ing, with the requirement of easy deployment on a wide

range of platforms, the limits of capabilities that can

be achieved with a simple, non-parametric system that

learns from demonstration. We want the system to be

usable by non-specialists, for example a robotics techni-

cian, rather than only by the developers of the algorithm.

This requires to minimise the number of meta parame-

ters, because these ultimately have to be given to the

system in addition to the demonstrations. To study such
a system, we first propose a taxonomy of the capabilities

for an autonomous and adaptive robot. Formally, the

robot control algorithm should be able to:

– Cope with noise in the sensors. Sensors are al-

ways noisy and therefore the perceived values at

execution time will never be exactly similar to the

ones at learning time. Therefore, a noise model must
be specified per sensor. Moreover, there might be

outliers, that is, values irrelevant to the task, for

example sun glare. These outliers, if not present on

all sensors at the same time, should not fully confuse

the execution of the robot.

– Consider timing to trigger action. Sometimes,
a robot might have to do an action at a specific time

after a given observation, in the form of open-loop

control. For example, a robot operating in a factory

might have to learn about delays in a processing

chain.

– Take action in function of sensory inputs. The

robot should not blindly replay a recorded trajectory

but should be able to react to sensory events such

as avoiding an upcoming obstacle. This capability is

often referred to as being reactive. For example, if

a mobile robot is trained to follow a wall either at

its left or its right, its actions should depend on the

presence of the wall at a given side.

– Consider past observations to decide of fu-

ture actions. Sometimes the right action to do at

a given time depends on the past observations. For

example, a robot might have to turn left or right at

a T-junction in function of some past observation.

This requires having a memory and can correspond

to state machines.

These capabilities are sometimes in competition, for

example a perfectly reactive robot will have no memory,

and a robot basing its action solely on memory will be

a pure automaton.

This paper proposes a minimalist white-box system

with only ns + 3 meta parameters, where ns is the

number of sensor dimensions. All these parameters are

related to the robotic platform and its application, but

do not depend on the task.

Our system, albeit simple, can reproduce a trajectory

considering noisy sensors; it can trigger actions by time,

and is able to keep memory of past events to decide

future actions. The different capabilities are controlled

by the 3 meta parameters not linked to the sensors.

We analyse the choice of these in simulation. Then, we

demonstrate our system on a miniature research robot

(marXbot) performing manipulation, and on a full-scale

field platform (artor) performing navigation. Finally, we
discuss the generality of our approach and lay out future

research steps.

2 Related Work

There have been mainly three approaches to learning

from demonstration:

– learning a mapping between configuration and com-

mands,

– learning a mapping between sensors and actuators,

– and learning a task by splitting it into a sequence of

motion primitives.

2.1 Mapping configuration to command

A major application of learning from demonstration can

be found in pick-and-place or other manipulation tasks

with a robotic arm. Indeed, the configuration space of

a robotic arm is very different from the workspace and

is usually of high dimension, which makes it difficult to

reason on for a non-expert. A large variety of algorithms

have been devised to learn a non-linear mapping between

the configuration and actuators.

Classical works in this field, such as by Calinon et al.

(2007), use Gaussian models to do regression and gener-

alisation between several recorded trajectories. Recent

development in this field include mixture models using

different reference frames (Calinon 2016) or even semi-

Markov models for better temporal evolutions (Havoutis

and Calinon 2019). This approach requires the specifi-

cation of several key parameters, such as the number of

Gaussian distributions and, for task-parametrized vari-

ants, all the relevant frames of the task. Other works in

this direction, such as reported by Chatzis et al. (2012)

try to circumvent this requirement by using higher-level,

non-parametric models such as Dirichlet Processes. How-

ever, these models also require the specification of more

abstract meta parameters, but hope that these are less

dependant on the task. Another difficulty is the choice

of the space in which the data should be encoded (for ex-

ample joint space, end-effector Cartesian space, torque

A Bayesian Tracker for Synthesizing Mobile Robot Behaviour from Demonstration 3

space) and what kind of motion (cyclic or discrete) they

should represent.

Another approach to model the motion is to consider

dynamical systems (Khansari-Zadeh and Billard 2011;

Pastor et al. 2013). For instance, Pastor et al. (2013)

have described skills as a combination of dynamic move-

ment primitives. While the attractor dynamics adds

smoothing and local adaptivity, this approach still de-

pends on several arbitrary parameters, such as the num-

ber of basis functions. For such a system to be able to

cope with unexpected elements such as obstacles, its

function must be modified explicitly by hand: handling

obstacle is not learned. In that sense, dynamic move-

ment primitives do not naturally consider exteroceptive

information.

While these approaches have shown impressive re-

sults, they cannot be applied when the configuration

of the robot is not directly available. Furthermore, as

they do not consider sensor values, they are unsuitable

for tasks requiring a decision based on some perceived

element of the environment.

2.2 Mapping sensors to actuators

The lack of concern with exteroceptive sensors can be

overcome by adding a perception layer in front of the

pipeline. For instance, Yang et al. (2020) use a deep
convolutional neural network to learn high-level features.

Then, they use random forests to control an autonomous

wheel loader.

In the same vein, one can combine deep learning

with dynamic movement primitives in order to do hu-

man motion classification and generation. For instance,

Chen et al. (2016) train a variational auto-encoder to

learn a compressed representation of the sensory space

in which they apply a dynamic movement primitive

model. The forcing term shaping the motion is also

learned using a neural network. A similar structure, in

which the dynamic movement primitive constraints are

replaced by a dynamic Bayesian network has been re-

ported by Karl et al. (2017). Recently, DelPreto et al.

(2020) have leveraged both virtual reality and neural

networks to implement an apprenticeship model combin-

ing self-supervised learning and human demonstration.

These works show the ability to learn, reproduce and

recognise various human motions.

Deep learning also opens the possibility of tackling

the learning problem in an end-to-end manner. A recent

step in this direction is SA-Net (Soans et al. 2020), which

is able to recognize state-action pairs using an RGB-

D sensor. However, it still needs to be coupled with

a policy learning algorithm. Moreover, deep learning

usually requires a lot of training data and still lacks

a methodology to devise the hyper parameters (e.g.

number and type of layers) for a given task.

2.3 Splitting sequences

Approaches presented so far focus on the continuity

of the motion and are not well suited for tasks whose

natural structures are discrete sequences of steps. In

particular, they cannot remember a sensor event in the

early part of a task and alter action in function in a

later stage.

On the contrary, several approaches, such as pro-

posed by Mühlig et al. (2012), split training sequences

into motion primitives by specifying either a structure

for the task or a function deciding on a step change,

typically looking for discontinuities. The same approach

can be used with a mobile manipulator (Konidaris et al.

2012), while driving an autonomous car (Maye et al.

2011), or with a robotic arm (Wu and Kofman 2008).

Often, generic segmentation (Keogh et al. 2004) is used.

For instance, Loula et al. (2020) learn modes, which are

trajectory optimized during replay with TrajOpt (Schul-
man et al. 2014). Sometimes, ad-hoc information is used

like contact points as by Dong and Williams (2012).

While these approaches can handle robotic tasks

involving several steps, they require a definition, either

explicit or implicit, of those steps. As a consequence,

they need a lot of parameters that depend both on

the robotic system and on the task. Works such as

reported by Grollman and Jenkins (2010) have tackled

the question of reducing this number of parameters,

for instance by trying to learn both transitions and

states in an unsupervised way. However, the latter study

concludes that this was not yet possible.

Another way of splitting is by probabilistic models.

Daniel et al. (2012) proposes to use a mixture of motion

primitive combined through a hidden option variable.

While the number of motion primitive and their shapes

are specified by hand, their parameters and the relation

between the states (option values) are learnt. In this

work, there is no possibility of sequencing, the choice of

the primitive is only controlled by the state (position and

speed in the examples presented in the paper). Another

approach by Infantes et al. (2011) trains a pre-defined

dynamic Bayesian network containing two hidden op-

tion variables. That system can potentially recover some

sequencing, at the expense of being specific to a robot

sensorimotor configuration and a type of task (naviga-

tion). Recently, sequencing has been achieved at the

symbolic level using influence diagrams and Bayesian

networks (Koenig and Matarić 2017). While a step for-

4 Stéphane Magnenat, Francis Colas

ward, such approach still requires the user to explicitly

define task parts.

This question of selecting a subsequence also appears

in visual teach and repeat systems (Furgale and Barfoot

2010). The aim is to demonstrate and then reproduce a

path with a mobile robot. The path is split into local

maps and a key question is to choose the relevant one

into which localising the robot. Recent approaches use

recommendation techniques (collaborative filtering) for

this selection, as MacTavish et al. (2018), or implicit

encoding through a neural network, as Xie et al. (2020).

However, they use this information to solve the geo-

metric localisation problem before applying standard

trajectory planning and following techniques. Therefore,

their system is restricted to a very specific application

with heavy use of prior knowledge.

A promising approach for imitation learning that

surfaced in the last two decades is inverse reinforcement

learning (Russell 1998; Ng and Russell 2000), for exam-

ple used with robots by Abbeel and Ng (2004); Abbeel

et al. (2010). This approach aims at recovering a reward

function from a set of demonstrations. Then, with this

reward function, an optimal policy can be computed.

This formulation is typically done using Markov De-

cision Processes (MDP) and, as such, the state space, the

action space and the transition model (the probability

of reaching a future state given the current state and the

action) are supposed to be known. In order to apply it

to a mobile robot, one can try to compute features from

the sensory space to enhance the state space. Vasquez

et al. (2013) has shown that selecting the features is

both important and challenging and, therefore, heavily

depends on the task. This approach cannot be used in

our case where we do not want to have to specify a state

space and estimate the current hidden state from the

sequence of observations.

In this paper, we present an approach that learns
both basic trajectory elements and their sequencing in

an implicit way. While not learning full state machines,

our approach can branch between different recorded

trajectory parts based on observation. It can both learn

timing and adapt the replay speed in function of the

environment. We achieve this feature set by using a

Bayesian approach that models the replay as a tracking

process with respect to the recorded data.

3 Model

Our approach does not try to build a synthetic rep-

resentation of the training data. On the contrary, the

algorithm aims at tracking, in the training data, the

most relevant information with respect to the current

attempt to reproduce the behaviour. More precisely, we

build a Bayesian filter in which we assume that both

sensor readings and motor commands are conditioned

by trajectory and time indices. In this model, replaying

is done by inferring the motor commands by marginali-

sation over those trajectory and time indices. The model

also assumes that motor commands and sensor observa-

tions are available at each time step at a certain constant

frequency. This model builds on the work of Pradalier

and Bessière (2004), adding multiple trajectories. A

preliminary version was published in (Magnenat et al.
2012b).

Our model is parameterised by two kinds of values:

meta parameters, that define the properties of the dis-

tributions and depend on the task; and implementation

constants, that can be kept fixed over a large variety of

systems.

3.1 Variables

The formal expression of this model involves defining

several variables:

– Π = {ζit , υit|∀i ∈ (1, N),∀t ∈ (1, Li)} Records of

N trajectories of lengths {L1, L2, . . . , LN}, where

trajectory i, at record time step t, has sensor data
ζit and actuator command υit (vector values). All

subsequent formulas are assumed to be conditioned

by Π.

– It Index of trajectory at replay time t, ranges from

1 to N .

– τt Position on trajectory at replay time t, ranges

from 1 to maxi Li.

– Ut Actuator command at replay time t, vector

value.

– Zt Observation (sensor data) at replay time t, vec-

tor value of ns dimension.

During recording, data are sampled at a frequency Cs.

Similarly, at replay time, actuator commands are gen-

erated at the same frequency. In our experiments, we

fixed Cs to 10 Hz.

3.2 Distributions

We decompose the joint distribution over those variables

by leveraging conditional independence assumptions.

This leads to a recursive expression of the inference

similar to a Bayesian filter (see Figure 1 for the dynamic

Bayesian network). The distributions involved are:

– p(Ut|It, τt): related to training data,

– p(Zt|It, τt): an observation model,

– p(It|It−1): transition between trajectories,

A Bayesian Tracker for Synthesizing Mobile Robot Behaviour from Demonstration 5

I0, τ0 I1, τ1

U1

Z1

I2, τ2

U2

Z2

It, τt

Ut

Zt

p(U1:t, Z1:t, I1:t, τ1:t) = p(U1:t−1, Z1:t−1, I1:t−1, τ1:t−1)

p(Ut|It, τt)p(Zt|It, τt)p(It|It−1)p(τt|τt−1) (1)

Fig. 1 The graphical representation of the model and the
corresponding decomposition.

– p(τt|τt−1): transition from a time step to the next,

– p(It−1, τt−1|Z1:t−1): result of previous inference step.

Note that p(Ut|It, τt) is not used directly in the inference,

as explained in Section 3.3.2.

3.2.1 Meta parameters.

Our model has only ns + 3 meta parameters: one σk
per sensor dimension k and 3 global ones θI , θτ , and α.

The parameter σk is related to the scale of variation: it

basically states when two values are different. It is impor-

tant to note that this parameter is only lower-bounded

by the noise of the sensor but is mostly governed by

the semantics of the values. This means that for two

sensors adequately measuring the same quantity, this

value would be the same even if one sensor is less noisy

than the other. For example, for an outdoor wheeled

robot, both differential gps and odometry give an infor-

mation on the pose, but with a different precision. In

that case, if the task is just to reach a large area, the

scale factor can be in the order of the meter for both

sensors, even if the d-gps can achieve better precision.

Hence while the σk parameters might vary for different

application contexts, they would be similar for different

tasks within the same context, such as reaching different

areas in the preceding example. The global parameters

θI and θτ control transitions while α is the probability

of measuring an outlier value on a sensor.

To improve readability, in the rest of this document,

we will often omit the term meta when talking about

these parameters.

3.2.2 Observation model.

The observation model is not trivial, in particular be-

cause two successive data points can be as far away as

90 % of the space. Therefore, a simple Gaussian mod-

elling of sensor noise situated on the data points is

not enough, as it would lead to infinitesimal probabili-

ties when two successive data points are very far away.

To cope with this, we consider that the observations

are sampled from a piecewise linear function. Thus, we

convolve our observation model with both segments in

observation space linking observations at time t− 1 and

t, and t and t+ 1.

Moreover, when two points are far away, for the

observation, we do not wish to consider the farther

away to be significantly less probable than the closest,

because anyway they are both wrong. Therefore, we

define a robust observation model by a mixture of a

uniform on the bounded observation interval and the

actual observation function, a Gaussian. This mixture
is controlled by α.

By linearity, it is easy to show that this convolved

model of a mixture is the mixture of the convolution
and a uniform:

p(Zt|It = i, τt = j) =
∏
k

[
(1− α)(

1

2

∫ ζki,j

ζki,j−1

1

∆ζki,j−1
F(t)dt+

1

2

∫ ζki,j+1

ζki,j

1

∆ζki,j
F(t)dt

)

+ α
1

Rk

]
(2)

where ∆ζki,j = ζki,j+1− ζki,j , F(t) is the observation func-

tion, and Rk is the range of sensor k.

Therefore, for a given sensor k, the integrals can be

implemented efficiently using the erf function:

1

2

∫ ζi,j

ζi,j−1

1

∆ζi,j−1
N (t, σ2)dt+

1

2

∫ ζi,j+1

ζi,j

1

∆ζi,j
N (t, σ2)dt

=
1

2(ζi,j − ζi,j−1)

[
C(x, ζi,j , σ)− C(x, ζi,j−1, σ)

]
+

1

2(ζi,j+1 − ζi,j)

[
C(x, ζi,j+1, σ)− C(x, ζi,j , σ)

]
(3)

=
1

4(ζi,j − ζi,j−1)

[
erf

(
x− ζi,j√

2σ2

)
− erf

(
x− ζi,j−1√

2σ2

)]
+

1

4(ζi,j+1 − ζi,j)

[
erf

(
x− ζi,j+1√

2σ2

)
− erf

(
x− ζi,j√

2σ2

)]
where σ is the amount of sensor noise, C(x, µ, σ) the

cumulative distribution function of the Gaussian of mean

µ and variance σ2 evaluated at x, and erf() the error

function.

3.2.3 Transition model.

The transition model is structured in two parts: the

index of the trajectory and the time position in a given

6 Stéphane Magnenat, Francis Colas

trajectory. These are represented by conditional proba-

bility tables. In order to allow smooth-enough transitions

in p(τt|τt−1), we over-sample the resolution on p(τ) by

a factor Cr. When dealing with recorded sensor values

and motor commands, we simply expand these data by

a factor Cr, with no interpolation. In our experiments,

we fixed Cr to 3.

The distribution over the next trajectory index given

the past trajectory index is close to an identity matrix

but with uniform probability θI to jump from one tra-

jectory to another. This ensures a strictly positive lower

bound on the probability of each trajectory, which is use-

ful to allow a trajectory that differs from the first part

of the observations to meaningfully contribute to the

motor commands when the observations start matching:

p(It|It−1) =

{
1− θI if It = It−1
θI
N−1 otherwise

(4)

The transition for the position inside a given trajec-
tory expresses that this position index most likely gets

increased by 1 × Cr but can also change by more or

less, with a probability controlled by θτ . This allows for

slight stretching of time for the replay, according to the

observations. To have a symmetric behaviour between

time extension and compression, we use a log-normal
function to express this relation:

p(τt = a|τt−1 = b) =

{
lnN

(
a−b
Cr

, θτ

)
if a > b

0 otherwise
(5)

This can be pre-computed and stored into a sliding

window of length W , which, for performance reasons

(see Section 3.4), we cut when the value of the function

is lower than Cw = 0.02 times the value of its mode.

Hence, W is found by solving the following equation:

lnN (e−θ
2
τ , θ2τ) · Cw = lnN (

W

Cr
, θ2τ) (6)

3.2.4 Initial conditions.

The initial condition is a uniform distribution over the

trajectories and a Dirac delta function on the first time

step:

p(I0 = i, τ0 = j) =

{
1/N if j = 0

0 otherwise
(7)

3.2.5 Termination criterion.

The task is considered completed if the probability mass

is mostly on the last indices of the trajectories. Indeed,

contrary to a deterministic automaton, we cannot expect

to be sure to be in the terminal state. Moreover, as there

are various tracks of various length and we maintain a

lower bound on the probability of all trajectories, the

probability threshold should not be too high. In the

present paper, we used: p(τt in last Cf time steps) >

Cfp = 0.9 with Cf = 10.

3.3 Questions

The inference can be divided into three different ques-

tions:

– update due to time, involving the prediction model;

– generation of a command, involving a decision func-

tion;

– update due to observations, involving the observation

model.

This order allows commands to be triggered by time

rather than by observation. Indeed, if a change in obser-

vation depends on a specific action, the replay needs to

actually make this action for the sequence to move on.

3.3.1 Prediction update.

The prediction update applies the transition models

for time and trajectory indices. It corresponds to the

following inference:

p(It, τt|Z1:t−1)

=
∑

It−1,τt−1

p(It, τt|It−1, τt−1)p(It−1, τt−1|Z1:t−1)

This inference can be simplified according to the under-
lying structure of P (It−1, τt−1|Z1:t−1). Indeed, it can be

written as the product P (It−1|Z1:t−1)P (τt−1|Z1:t−1) in

which each factor can be updated separately:

p(It, τt|Z1:t−1)

=
∑
It−1

p(It|It−1)p(It−1|Z1:t−1)· (8)

∑
τt−1

p(τt|τt−1)p(τt−1|It−1, Z1:t−1)

3.3.2 Getting command Ut at time t.

The probability of a given command Ut is the marginal-

isation over trajectory and time indices:

p(Ut|Z1:t−1) =
∑
It,τt

p(Ut|It, τt)p(It, τt|Z1:t−1) (9)

This expression depends on the prediction update com-

puted above and on p(Ut|It, τt), which is not known.

However, if we assume that the trajectories have been

A Bayesian Tracker for Synthesizing Mobile Robot Behaviour from Demonstration 7

generated by applying a decision function D on the prob-

ability distribution over the commands, and that this

function is linear, we do not need to specify p(Ut|It, τt).
Indeed, distributing D in Equation 9 yields:

D(p(Ut|Z1:t−1)) =
∑
It,τt

D(p(Ut|It, τt))p(It, τt|Z1:t−1)

=
∑
It,τt

υItτtp(It, τt|Z1:t−1) (10)

where we can assume D(p(Ut|It = i, τt = j)) = υij .

In the end, the command is a linear combination of

commands from the training trajectories.

3.3.3 Taking sensor data into account.

The internal state is then finally updated using the

observation:

p(It, τt|Z1:t) ∝ p(Zt|It, τt)p(It, τt|Z1:t−1) (11)

3.4 Complexity and parallelisability

Considering L′ = maxi Li and W the length of the

update window used in the temporal transition model,

the complexity of the algorithm is the following:

– Prediction update: O(N × L′ × W), as for every

trajectory and time indices, we have to sum over W

samples and then multiply by a factor depending on

the sum of the probability in that trajectory, that

can be computed previously by summing for every

trajectory over all time indices.

– Getting command: O(N × L′), as we have to sum

over all trajectory and time indices.

– Taking sensor data into account: O(N × L′ × k), as

we have to sum over all trajectory and time indices

as well as sensor dimensions.

As these steps are applied in sequence, the complexity

is dominated by the heaviest. The complexity of our

algorithm is thus O(N ×L′ ×max(W,k)). Both W and

k are fixed with respect to the number and length of

trajectories. In our experiments, with Cr = 3, we have

W ranging from 4 to 19 as θτ ranges from 0.01 to 1 and

k < 10. Therefore, from a scalability perspective, the

complexity is O(N × L′).
The operations for every trajectory (which typically

have a similar length) can be conducted in parallel, with

only the transition model and renormalisation moving

probability mass between trajectories. These can be done

at the same time and therefore require a synchronisation

only once per time step. Therefore, this algorithm is

well suited for parallel implementation on the cpu or

the gpu.

3.5 Implementation

We have implemented our algorithm as an open-source

Python module (BSD license)1. For performance rea-

sons, the time-critical parts of the algorithm have been
implemented in Cython, and optimised by looking at

the generated C code. This provided a smooth path

from the first experimental code to an efficient real-time

implementation.

As our algorithm deals with probability distributions,

these can quickly become infinitesimally small, leading

to numerical problems. To alleviate these, if α is 0, our

implementation adds a small value Cα = 10−150 (since

we use double-precision floating point numbers) to the

observation probability, and does a lot of sanity checks.

This made sure that the latent space never became
degenerated in any of our experiments.

As summary, in all our experiments, we used the

following implementation constants:

– Cs = 10 Hz the frequency of record and replay.

– Cr = 3 the over-sampling resolution of p(τ).

– Cw = 0.02 the ratio of the mode of the p(τt|τt−1)

sliding window at which the window is cut.

– Cf = 10 the count of last time steps to consider

for stopping the replay.

– Cfp = 0.9 the ratio of probability mass that must

be in last Cf time steps for the replay to stop.

– Cα = 10−150 constant to avoid numerical problems.

4 Capability analysis

As explained in Section 1, there are several distinct

capabilities that our algorithm aims at capturing. Ro-

bustness to noise is handled by the Bayesian framework

we use. Thus, we focus here on the other capabilities

and their sensitivity with respect to the different meta

parameters of our algorithm. Some of the capabilities

have different, and even conflicting, optimal values for

these meta parameters.

4.1 Experimental protocol

We use a small wheeled robot performing specific tasks

in a virtual maze, that highlight the various capabilities

of our algorithm. In this section, we explore these tasks

in simulation. Section 6 will show the deployment of our

algorithm on two different real robots.

The simulation is built using the Enki 2D simula-

tor (Magnenat et al. 2009). The robot is a simulated

e-puck robot (Mondada et al. 2009). It is a small (7.4 cm

1 https://github.com/bayesian-trajectory-replay

https://github.com/bayesian-trajectory-replay

8 Stéphane Magnenat, Francis Colas

Fig. 2 Experimental setup used for analysing the capabilities
of our algorithm. In this example, the wall of the wider area
has a green poster surrounded by a red background.

diameter) differential-drive robot controlled by setting

the speed of the left and right wheels. Eight infrared-

based proximeters are mounted in a ring around the

robot and a front-facing camera is used to distinguish

the colour of the wall ahead of the robot. For this ex-

periment, we use a single pixel in the centre of the

camera and the 6 front- and side-facing proximeters.

These proximeters have a highly non-linear response

and Enki models them accordingly. In particular, their

output saturates at distances outside the 1–5 cm range.

Figure 2 presents the environment: a corridor maze

with a wider area in the middle and two rooms at the

end. The ground of the left room is green and the ground

of the straight room is red. The side of the wider area
can be set to have a red or green colour, called poster,

surrounded by a red or green background. Several tasks

are available in this environment and are described in

the following sub-sections.

For each task, we recorded several trajectories. The

robot was placed at the origin with uniform noise of

± 0.5 cm on its position and ± 5° on its orientation.

The sensor parameters were set to σcamera = 10 %

and σproximeter = 0.5 cm. The demonstrations were per-

formed by two different people (the two authors) by

driving the robot with a joypad using visual feedback

from a real-time rendering as show in Figure 2.

4.2 Complex task

We propose a complex task, the successful execution of

which requires the different capabilities our algorithm

provides. Starting from the left corridor, the task is to

go in the wider area, turn 90° and check the colour of

the poster for about 2 s, and then to go in the room

of the matching colour. Both the colour of the central

poster and of the surrounded wall can be independently

set to either green or red. The robot is placed in the left

corridor, facing right at three different starting positions:

6, 12 and 18 cm from the left wall. We recorded 120

training trajectories: 10 for each configuration of starting

position, background colour and poster colour.

Figure 3 shows the traces of 120 replay trajectories,

corresponding to 10 runs for each configuration as in

Fig. 3 Traces of 120 replay trajectories for the complex task,
with parameters θτ = 0.3, θI = 10−8, and α = 0.01. The
colour indicates the target room. Full lines are successful runs,
dashed lines are failed runs. Blue lines are runs with collisions.

the training. The full green and red traces correspond

to successful runs to the respective rooms. The dashed

ones correspond to entering the wrong room or stopping

in the corridor. The blue traces correspond to collisions

with the environment. Globally, the success rate is 61 %;

the rate of collision is 11 % and the rate of going to

the wrong room or stopping in the corridor is 28 %.

The algorithm parameters are θτ = 0.3, θI = 10−8,

and α = 0.01. These values are used by default in the

next sections. Section 4.6 analyses the search for these

parameters.

4.3 Time-driven action: the look task

Being a trajectory tracker, our algorithm is able to take

action as a function of time. The first part of the complex

task is to get out of the left corridor and turn to look

at the central wall colour. We call this the look task.

The robot can achieve this task by moving forward in

the corridor for some time until it is approximately at

the level of the central poster and then by turning left

in place by approximately 90◦. If the robot is not in

the dark grey zone (see Figure 2) or if the camera is

not pointing at the poster once the turn is completed,

the task is a failure. Note that the robot cannot deduce

when to turn left from its current sensor measurements,

but rather must count time since the wall on its left

disappeared from the view of its proximeters.

We recorded 10 training trajectories and used our

algorithm to execute the task. We run 500 replay trials.

In most runs (88 %), the robot ends up looking at the

correct part of the wall. Figure 4 shows the traces of a

sample of 20 replays. Two of those are failures: in the
first one, the robot turns too much and came to look

backward; in the second one, the robot advances too

much and does not turn back enough to compensate.

The variability between the trajectories is due to the

difference in starting pose, as well as noise on the sensors

and actuators.

To study the effect of parameter of θτ , we vary, at

replay, the starting position of the robot in the range

of ± 6 cm, by steps of 1 cm, while using the same 10

A Bayesian Tracker for Synthesizing Mobile Robot Behaviour from Demonstration 9

Fig. 4 Trace of 20 replay trajectories in the look task. Arrows
indicate the final pose of the robot. The colour indicates
whether the task is a success (green), or a failure (red).

−6 −4 −2 0 2 4 6
start offset (cm)

0

20

40

60

80

100

su
cc

es
s

ra
te

(%
)

θτ=1
θτ=0.56
θτ=0.3
θτ=0.18
θτ=0.1
θτ=0.03
θτ=0.01

Fig. 5 Success rate for the look task as a function of starting
offset for seven different values of θτ . The rate is computed
based on 500 trials using all 10 training trajectories. N = 10,
θI = 10−8, α = 0.01

training trajectories. Figure 5 shows that, as expected,

for smaller offsets, the success rate is globally higher.

However, we can see that bigger values of θτ lower the
success rate while accepting a bigger start offset. Indeed,

this parameter can be interpreted as the time accuracy of

the replay with respect to the demonstrated trajectories.

Therefore, if the robot is too strict in adhering to the

time of the demonstrated trajectories, its ability to adapt

to trajectories that should be longer or shorter due to a

difference in the starting position is reduced.

4.4 Sensor-driven action: the dead-end task

Being a trajectory tracker, our algorithm does not simply

follow a fixed trajectory but is also able to adapt to the

sensory information and perform sensor-driven actions

to a certain extent. This reactive capability can be

necessary in the complex task, for instance to prevent

the robot from colliding with walls. However, in order

to study sensor-driven action in isolation, we designed

a different task called the dead-end task.

In this task, the robot is placed facing left in the

middle of the left corridor (see Figure 2) and must drive

forward until it is at a distance of 1.5 cm from the wall

(with a tolerance of 1 cm). The robot must not touch

any walls, and thus must use its side proximeters to

0 5 10 15 20
starting distance between robot and wall (cm)

0

20

40

60

80

100

su
cc

es
s

ra
te

(%
)

N=20
N=10
N=5
N=2

Fig. 6 Success rate for the dead-end task as a function of
starting position for four different numbers of training tra-
jectories. Each line shows the median rate of 500 random
selections of N training trajectories out of 140. The rate is
computed based on 100 trials. θτ = 0.3, θI = 10−8, α = 0.01

regulate its distance to the left and right walls, while

using its front proximeter to decide when to stop. This

task would be easy to formulate in a reactive form as

the proximeters give all the necessary information.

We recorded 10 training trajectories for each of 14

different starting distances from the wall, from 6.3 to

20.3 cm by steps of 1 cm (corresponding to the robot’s

centre being from 10 to 24 cm from the wall). We test

the algorithm by placing the robot at different starting

distances from the wall, varying from 1 to 20 cm. This

ensures that the test data do not exactly correspond to

the training data.

We first want to assess if the robot is able to solve

this task out of a limited set of training trajectories. For
a given number N , we uniformly sample N trajectories

out of our 140 training runs and compute the average
success rate of 100 test runs with the robot starting

at a given distance from the wall. Figure 6 shows the

median success rate out of 500 samples of N trajectories,

to account for variability of the results depending on

the choice of training runs. We can see that for inter-

mediate distances from 5 to 15 cm, in most cases the

algorithm will succeed even with only 2 training trajec-

tories. A greater number of trajectories is able to help

our algorithm significantly extend the range of success.

In addition to the median, Figure 7 shows the 10 %

and 90 % percentiles of the success rate. We can see that

even though the median success rate is at 100 % for 2

training trajectories, at intermediate starting distances,

the 10 % percentile can drop as low as 20 %. This is due

to the need of diversity in the training trajectories for

good generalisation, as the specific choice of training

trajectories is important for the replay performance.

The bigger the number of training trajectories, the lower

10 Stéphane Magnenat, Francis Colas

0 5 10 15 20
starting distance between robot and wall (cm)

0

20

40

60

80

100

su
cc

es
s

ra
te

(%
)

N=20
N=2

Fig. 7 Success rate for the dead-end task as a function of
starting position for two different numbers of training trajec-
tories. Each bold line shows the median rate of 500 random
selections of N training trajectories out of 140. The coloured
areas show the 10–90-quantiles. The rate is computed based
on 100 trials. θτ = 0.3, θI = 10−8, α = 0.01

the risk of lacking diversity, ensuring a more consistent

performance.

An additional observation on Figure 7 is that the

decrease in the success rate is not symmetric with respect

to the reference position (12 cm). The decrease is slower

but comes earlier when starting further away compared

to starting closer to the wall. Indeed, the sensor data only

give information about the wall at small distances and

therefore do not give any information on the progress

of the task up to that point. On the contrary, when the

wall is observed earlier than expected, the mode of the
probability distribution can be pushed forward in time

due to the time stretching governed by θτ .

Figure 8 shows the median of the success rate for

various values of θτ with a training set of 5 runs. It

is quite clear that bigger values improve the overall

performance.

Furthermore, Figure 9 shows that not only is the

performance globally better with a bigger value of θτ
but also that the performance becomes less dependent

of the specific choice of training trajectories. This means

that with a bigger value of θτ it is easier to interpo-

late between training data, and, as a consequence, that

the performance is improved more this way than by

increasing the number of training trajectories.

As a conclusion, θτ governs a trade-off between the

precision of replay of a trajectory based on time and

adaptability to different experimental conditions.

4.5 Memory-driven action: the go-to-room task

Our algorithm is also able to choose actions based on

what happened previously during the run. To test this

0 5 10 15 20
starting distance between robot and wall (cm)

0

20

40

60

80

100

su
cc

es
s

ra
te

(%
)

θτ=1
θτ=0.56
θτ=0.3
θτ=0.18
θτ=0.1
θτ=0.03
θτ=0.01

Fig. 8 Success rate for the dead-end task as a function of
starting position for seven different values of θτ . Each line
shows the median rate of 500 random selections of 5 training
trajectories out of 140. The rate is computed based on 100
trials. N = 5, θI = 10−8, α = 0.01

0 5 10 15 20
starting distance between robot and wall (cm)

0

20

40

60

80

100

su
cc

es
s

ra
te

(%
)

θτ=1
θτ=0.18
θτ=0.03

Fig. 9 Success rate for the dead-end task as a function of
starting position for three different values of θτ . Each bold line
shows the median rate of 500 random selections of 5 training
trajectories out of 140. The rate is computed based on 100
trials. The coloured areas show the 10–90-quantiles. N = 5,
θI = 10−8, α = 0.01

capability, we designed a task, go-to-room, in which the

robot should go in the room of the same colour as the

central poster (green in the configuration of Figure 2).

Both the colour of the central poster and of the sur-

rounded wall can be independently set to either green

or red. The challenge of the go-to-room task is that the

signal to decide whether to turn left to the green room or
continue straight into the red room is not present when

the decision must be taken but, instead, significantly

earlier when seeing the poster. We recorded 120 training

trajectories (30 for each colour configuration) starting

with the robot facing the central poster.

Figure 10 shows the outcome of 4000 replay trajec-

tories as a function of the θI parameter. This shows

that even if the training data is composed of trajectories

A Bayesian Tracker for Synthesizing Mobile Robot Behaviour from Demonstration 11

10−64 10−32 10−16 10−8 10−1

θI

75

80

85

90

95

100

ra
te

(%
)

success
wrong room
collision

10−64 10−32 10−16 10−8 10−1

θI

0

2

4

6

8

10

ra
te

(%
)

wrong room
collision

Fig. 10 Outcome of 4000 replay runs for the go-to-room task
for each value of θI . “success” means the robot went to the
designated room. “collision” means the robot collided with
the wall. “wrong room” means the robot went to the other
room. θτ = 0.3, α = 0.01. Top: cumulated probability; bottom:
individual probabilities of error conditions. Note that the
ranges of the two plots are different.

going to either rooms in equal proportion, our algorithm

is able to choose the correct room more often than by

chance. This is done during the observation of the poster

by the general lowering of the probabilities associated

to the trajectories of the wrong colour.

We can see that with increasing values of θI , the

chance to end in the wrong room – that is to have forgot-

ten which room to go to – increases. At the same time,

the collision rate decreases. This is due to the ability of

our model to use experience from different trajectories

to avoid obstacles. A choice of optimal value is difficult

as the performance does not significantly depend on θI
if it is not too large.

As a conclusion, θI governs a trade-off between the

memorisation capability – tied to selected trajectories –

and the adaptability – for which leveraging more trajec-

tories is useful.

4.6 Optimal parameters for complex tasks

The analysis of the previous sections shows that each

parameter influences the capabilities of the algorithm

to reproduce a task with a need for either time-driven,

sensor-driven or memory-driven actions. However, com-

plex tasks will usually require all three capabilities and

therefore these parameters must be chosen accordingly.

The complex task described in Section 4.2 can be

seen as the combination of the look task (time-driven),

the go-to-room task (memory-driven), and the dead-end

task (sensor-driven).

4.6.1 Influence of the meta parameters.

Figure 11 shows the influence of each of the meta pa-

rameters on the success rate of the complex task. The

values θτ = 0.3, θI = 10−8, α = 0.01, shown as dashed

lines, were chosen based on a coarse search.

The first parameter with significant influence is θτ ,

which was expected after the findings for the individual

sub-tasks. Also, too high values for θI induce a large

probability to go to the wrong room and to collide

with the walls. This is similar to the results depicted in

Figure 10.

However, there is now a new effect with lower values

of θI : we observe that, despite a similar success rate,

the collision rate increases. This illustrates the trade-off

between leveraging trajectories with a history of non-
matching observations in order to prevent collision and

keeping a longer memory of past observations in order

to guide present decision. The selected value of θI is

therefore chosen so as to lower the chance to hit the

wall while not significantly degrading the performance.

The last parameter, α, does not seem to have too

much influence within this experiment. This is due to

the actual simulation of the sensors which reproduces

the saturation of the infra-red proximeters in a narrow

range of distances (between 1 and 5 cm) with a cor-

responding noise parameter σ = 0.5 in our algorithm.

Therefore, given that σ is 10 % of the sensor range, the

α parameter, which prevents outlier observations from

having disproportionate effects, is not really needed and

could even be set to 0.

As can be seen in Figure 12, the success rate does

not depend on the starting position. However, the colour

configuration plays an important role, and can explain

the variability in success rates. As expected, one can

observe that the conflict situations (different colours for

the wall and the poster) lead to a lower success rate.

However, that is not only due to more confusion, but

also to more collisions. A possible explanation is that,

in conflict situations, the probability contrast between

12 Stéphane Magnenat, Francis Colas

0.01 0.1 0.3 1
θτ

0

20

40

60

80

100

ra
te

(%
)

10−64 10−32 10−1610−810−1

θI

10−8 10−4 10−2

α

success wrong room collision

Fig. 11 Influence of the meta parameters on the outcome of the complex task. Distribution of the outcome as a function of the
parameter values, computed based on 200 trials in each configuration (13,600 in total) using 120 training trajectories. The
dashed lines show the selected parameter values.

poster:
wall:

R
R

R
G

G
R

G
G

colours of the wall and poster

0

20

40

60

80

100

ra
te

(%
)

6 12 18
starting position

success wrong room collision

Fig. 12 Distribution of the outcomes based on the task con-
figuration. Left: distributions according to the colours of the
poster and the wall, based on 3,400 trials using 120 training
trajectories. Right: distributions as a function of the starting
position, based on 800 trials using 120 training trajectories.

correct and incorrect trajectories is lower, which leads

the command to interpolate more and therefore stray

further away from the demonstrated trajectories. In this

case, the robot will have more difficulty to recover.

Furthermore, we observe that the robot has more

difficulty to go to the red room than to go to the green

room. This result seems counter-intuitive at first as going

to the red room only requires to go straight whereas

going to the green room requires turning left, the right

amount at the right location. This can be explained by

observing that, in going to the red room, the robot tends

to stop prematurely. This is due to the robot having

slightly lower acceleration during replay than recording

(see Section 7). This problem also happens when the

robot goes to the green room. However, in the green case,

the corner is a salient observation helping the robot to

keep track of the trajectory whereas in the red case, the

robot only sees the right wall which is less informative.

4.6.2 Influence of the number of demonstrations.

A last element that can be studied is the influence of

the number of demonstrations on the performance. Fig-

ure 13 shows the distributions of outcomes for 12, 36, or

all 120 training trajectories. On the left, the trajectories

are chosen evenly among the 12 different training condi-

tions (3 starting positions, 2 wall colours and 2 poster

colours) whereas on the right the trajectories are chosen

randomly among the whole set of 120 recorded training

trajectories. As expected, the success rate increases with

a higher number of training trajectories. This is due

to two factors: the collision rate decreases as there are

more examples, and the relative rate of going to the

wrong room also decreases.

With 12 trajectories evenly chosen, the system

achieves a 53 % success rate with only one training

trajectory per condition. When choosing the trajecto-

ries at random for 12 trajectories, there is no guarantee

that there will be a training trajectory for each training

case. We can observe on the right of Figure 13 that the

overall success rate decreases to 49 %. The performance

for 36 trajectories does not change significantly between

the two selection strategies, presumably because the

probability of not having an instance of each training

configuration is small.

4.6.3 Computational time.

We report computational times running single-threaded

on an Intel Core i9-8950HK processor in VirtualBox on

a laptop computer. Using 12 training trajectories on the

full task, each iteration took an average of 4 ms. For

120 trajectories, each iteration took an average of 45 ms.

This ratio is consistent with the complexity analysis

of Section 3.4. As our control loop runs at 10 Hz, the

A Bayesian Tracker for Synthesizing Mobile Robot Behaviour from Demonstration 13

12 36 120
training trajectories

0

25

50

75

100

ra
te

(%
)

even

12 36 120
training trajectories

rand
success wrong room collision

Fig. 13 Distribution of the outcomes based on the number
of training trajectories, computed by averaging 68,000 tri-
als using 20 sampling of trajectories (except for 120). Left:
the training trajectories are distributed evenly among the 12
training conditions. Right: the training trajectories are chosen
randomly among the 120 training trajectories.

performance is not an issue even with this large a number

of training trajectories.

The average iteration time for 120 training trajec-

tories can be broken down into 1 ms for the prediction

step, 2 ms for the command step, and 42 ms for the
observation step. This shows that the observation step,

involving the complex observation model described in

Section 3.2.2, is the major contributor to computational

time.

As a conclusion, our system can achieve satisfactory

performance on a complex task even with a low num-

ber of training examples, while keeping a reasonable

computational load.

5 Comparison with Gaussian processes

To compare our method with existing approaches, we

create a set of alternative Gaussian Process (gp) models

that differ in how they consider time. We choose gp

as a baseline because they form the core of several re-

lated works and have an elegant theoretical formulation

(Rasmussen and Williams 2006). A gp is a stochastic

process, that is a collection of variables, such that any

finite collection of those variables follows a multivariate

Gaussian distribution.

As such, it can be seen as a probability distribution

over functions and, among others, it has been widely

used for regression (Williams and Rasmussen 1996). In

robotics, it has been the basis for some learning by

demonstration approaches in which, a gp or a mixture

of gp was learned to encode the sensori-motor trajectory

(Calinon et al. 2010; Calinon and Lee 2016).

5.1 Models

Direct. The dgp model builds a single gp regressor

from the time to the actuator commands, combining all

considered training trajectories and ignoring the sensors.

The function to learn can be written as:

t 7→ U (12)

Reactive. The ragp model builds a single gp regressor

from the sensor data to the actuator commands, combin-

ing all considered training trajectories and time steps.

The function to learn is thus written as:

Z 7→ U (13)

Replay. The rpgp model builds, for each recorded time

step, a gp regressor from the sensor data to the ac-

tuator commands, combining all considered training
trajectories. The function to learn is therefore:

∀t : Zt 7→ Ut (14)

Implementation. All models are implemented in Python

using scikit-learn (Pedregosa et al. 2011) and trained

with the L-BFGS-B algorithm.

5.2 Comparison results

We can compare the performance of these models for

each task.

5.2.1 Time-driven action

The look task consists in moving forward and turning on

the spot in order to look at the poster. It is referred to as

a time-driven action since, for a given starting position,

executing commands with the same timing (open-loop

control) is theoretically enough. In practice, such open-
loop replay is limited as there is always noise in the

motors and starting position and physical interactions

are always slightly different.

The left side of Figure 14 shows the outcome distribu-

tion when the robot starts in the middle of the corridor

and the models are trained from the same starting posi-

tion. Besides success and collision, it can be useful to

distinguish two other failure conditions: “not in front”

means that the robot stopped either too early or too

late and is not in the gray square depicted in Figure 2,

whereas “not looking” means the robot camera is not

pointing at the poster.

We can observe that, as expected, dgp has a high

rate of success. Similarly, we can see that, as expected,

14 Stéphane Magnenat, Francis Colas

BTR DGP RaGPRpGP
method

0

20

40

60

80

100

ra
te

(%
)

same starting position

BTR DGP RaGPRpGP
method

all starting positions

success
not looking

not in front
collision

Fig. 14 Distribution of the outcomes on the look task for the
different models. On the left, computed on 800 trials starting
in the middle using, as training data, 40 trajectories with
the robot starting in the middle. On the right, computed on
13,600 trials using 120 training trajectories with three different
starting positions.

ragp has trouble to stop at the right place and, when

it does, to turn by the right amount.

What is less expected is the low probability of success

of rpgp, which, most often, does not reach the proper

place. This is due to the construction of the Gaussian

Process: outside known sensor values, its mean is zero.

Hence, when it observes something different than what

it was trained for, the commands will be reduced until

the robot stops. That is what happens here when, due

to sensor uncertainties, the robot slightly slows down

in the corridor. Thus, it reaches the exit later than in

the recorded trajectories, leading to a large mismatch

between these and its sensor observations, making it

decelerate and quickly stop. This demonstrates the lack

of robustness of rpgp.

The situation is different when the models are trained

and tested with various starting positions (right side of

Figure 14). Contrary to the case with a single starting

position, dgp is not able to correctly perform the task.

Indeed, all trajectories are mixed together and it starts

turning while still moving forward, which makes it de-

viate from the central line of the corridor. It also has

trouble turning by the right amount.

However, rpgp performs better since having more

trajectories allows for more variability in sensor input

that can help compensate for larger differences in various

test conditions. The right of Figure 14 aggregates tests

with starting positions sampled from a wider interval

than the training data. For comparison, the performance

of rpgp starting in the middle but with all the training

trajectories, reaches 62.5 %. It is significantly higher

than with only the trajectories starting in the middle

(as can be seen on the left of Figure 14) but it is still

below our model, which performs the best.

BTR DGP RaGP RpGP
method

0

20

40

60

80

100

ra
te

(%
)

success
not arrived
collision

Fig. 15 Distribution of the outcomes on the dead-end task
for the different models computed on 16,000 trials using 140
training trajectories.

5.2.2 Sensor-driven action

The dead-end task is purely reactive in that the robot

needs to stop at a given distance from the wall while

starting at different distances and with slightly different

orientations.

Figure 15 shows the outcome of the various mod-

els for this task. As expected, ragp performs nearly
optimally. Actually, the cases where it fails correspond

to the controller stopping too early. This only happens

with the furthest test distances due to the termination

condition of the controller arbitrarily chosen to be after

10 % more time steps than the longest duration train-

ing trajectories. A laxer termination condition would
probably yield a perfect behavior.

The poor performance of dgp is also expected as

it only mixes training commands regardless of sensor
inputs. It only succeeds for starting distances close to

the average of those of the training trajectories.

On the contrary, Figure 15 shows that rpgp can

perform well enough when distances are not too large.

When they are, at the end of the test run the sensors

are still too far to perceive the wall while they do in all

training trajectories. When this perception difference is

too large, the zero-mean prior of the Gaussian process

makes the robot stop.

On this task, our model shows a small probability

of collision when starting very close to the wall. This

makes it slightly worse for this reactive task than ragp,

the purely reactive model.

5.2.3 Memory-driven action

As explained above, in the go-to-room task, the robot

needs to decide to go straight into the red room or turn

left into the green room based on the colour of the poster.

A Bayesian Tracker for Synthesizing Mobile Robot Behaviour from Demonstration 15

BTR DGP RaGP RpGP
method

0

20

40

60

80

100

ra
te

(%
)

success
wrong room
corridor
collision

Fig. 16 Distribution of the outcomes on the go-to-room task
for the different models computed on 800 trials using 120
training trajectories.

This cue is only observed at the start and is not present

anymore at the actual time the decision must be taken.

As no gp model explicitly extracts this information,

it is expected they all fail, as shown in Figure 16. The

failure modes are different. For instance, as Dgp essen-

tially mixes the commands, it mostly hits the corner

between the green and the red rooms.

Ragp exhibits a saner behaviour as it never hits the

walls and mostly enters a room at random. In addition,

around 10 % of the times, it stops before entering either

room. This is again due to the zero-mean prior on the

commands: when the sensor values are too different from

the training data, the robot stops. This happens when

the controller hesitates while choosing which room to

go to and goes in between.

Finally, Figure 16 shows that rpgp never reaches

a room but always stops before. This is the same phe-

nomenon due to the zero-mean prior of stopping when

seeing something too different from training data. While

this is similar in ragp, rpgp only uses the sensor values

from the training trajectories at the same time step,

which makes it less resilient than ragp.

Our model does not explicitly check a color signal

but tries to act as recalled from trajectories with similar

observation histories. An element of this observation

history is the color of the wall, which is why our model

is able to succeed in more than 80 % of the cases.

5.2.4 Complex task

The complex task is the concatenation of the look and

go-to-room tasks. The expectation for the success rate

is thus to be lower than either task separately, which

can be observed in Figure 17.

Besides our BTR model, no model is able to per-

form the task with any reliability. Only ragp is able to

BTR DGP RaGP RpGP
method

0

20

40

60

80

100

ra
te

(%
)

success
wrong room
corridor
collision

Fig. 17 Distribution of the outcomes on the complex task
for the different models computed on 13,600 trials using 120
trajectories.

rarely reach one of the rooms and, as a consequence, to

reach the correct room at random. Dgp and rpgp both

perform similarly as the go-to-room task, that is, they
go into collision or stay in the corridor, respectively.

This shows that, in order to perform the complex

task, models ought to have a variety of capacities: sensor-,

time-, and memory-driven action. While our simple

tracking model possesses those capacities, it is not the

case of any of the gp models tested.

6 Deployment on real mobile robots

This section demonstrates the deployment of our algo-
rithm on two different robots. The first one is a small

research robot performing a complex multi-step task.

The second one is a field robot entering a trailer after

climbing up a ramp.

6.1 Grasping an object with marXbot

A preliminary version of our algorithm was deployed on

a small research mobile robot grasping an object and

reported in (Magnenat et al. 2012b). In this section, we

briefly summarise these results.

6.1.1 Protocol.

This experiment consists of grasping a polystyrene cube

with the marXbot mobile robot (Bonani et al. 2010),

which is equipped with a magnetic gripper (Figure 18,

top-left). This gripper, described by Rochat et al. (2010),

is composed of a permanent magnet that rotates within

magnetic flow guiding elements, creating a stable on/off

magnetic switch with low energy consumption. The

robot has 5 degrees of freedom: the left and right track

16 Stéphane Magnenat, Francis Colas

15 cm

20 cm

25 cm

1. orient
vision

2. scan
infrared

3. rotate
timing

4. down
timing

5. catch
timing

6. rot. left
timing

7. rot. right
timing

8. uncatch
timing

9. unrotate
timing

10. scan
infrared

11. rotate
timing

12. down
timing

13. catch
timing

active sensor
active actuator

operation
stop condition

Fig. 18 The gripper-equipped marXbot robot with the cube
(top-left), the experimental setup (top-right), and the sequence
of operations to securely grasp a cube (bottom), from Magne-
nat et al. (2012a).

velocity, the elevation and tilt angle of the gripper, and

the on/off position of its magnetic switch. The sensors

consist of a camera and six infrared-based proximeters.

The camera is pre-processed to return the position of

the cube on the image’s x-axis. The proximeters have

a non-linear response with a good sensitivity between
1 and 3 cm, and almost saturate after 7 cm. They are

pre-processed to return a linearised value.

The cube is placed at a distance of 25–40 cm from the

robot, with a horizontal shift of ± 10 cm (Figure 18, top-

right). The grasping procedure is complex: The robot

must orient itself towards the cube, change the position

of its gripper to scan the cube, advance until it is close

enough, refine its orientation, turn its gripper back to

the grasping position, fetch the cube, move sideways to

ensure the cube is aligned, do another pass of scanning

to align the cube in the centre of the gripper, and then

finally fetch the cube again. Figure 18 (bottom) shows

the exact sequence of operations with the description

of the active sensors and actuators at a given step, and

the condition to pass to the next step. This sequence

was used as a guideline by the human driver and is

given here purely as information for the reader, the

algorithm was not aware of these steps in any way. We

chose this problem because programming and tuning this

behaviour has required a significant effort in a previous

work reported by Magnenat et al. (2012a).

We use this scenario to validate the model on a safe

physical system, to study the influence of the param-

eter θI , and to test the interpolation capabilities. We

recorded 20 training trajectories with the cube at 20

different positions (dashed squares in Figure 18, top-

demonstrations 20 6

θI 10−4 10−3 10−2.5 10−2 10−1.5 10−1 10−0.5 10−0.5

success 9 11 7 13 13 13 14 11
timeout 5 2 6 0 0 1 1 3
grasp fail 0 2 1 1 1 0 0 1
exit 1 0 1 1 1 1 0 0

Table 1 Success rate of object grasping experiment for differ-
ent values of θI based on 15 tests per value.

●
●

●

●

●

●

●

1.0

1.5

2.0

2.5

al
ig

nm
en

t e
rr

or
 [m

m
]

10−4 10−3 10−2.5 10−2 10−1.5 10−1 10−0.5

100

105

110

115

du
ra

tio
n

[s
]

θI

Fig. 19 The alignment error and run duration of object grasp-
ing experiment for different values of θI . Points are averages
and bars show the standard deviation. These are computed
on successful runs only. Note that the y-axes do not start at
0.

right). Then, for 7 different values of θI , we tested 3

times the fetching of the cube at 5 different positions

not present in the training data (solid blue squares in

Figure 18, right). The other parameters are θτ = 0.05,

α = 0, σcam = 8 %, and σproximeter = 0.5 cm.

When recording trajectories, a human driver tele-

operated the robot with a joypad. The human was in

another room than the robot, and was only given as
input the same values as the algorithm, through a sim-

plistic graphical user interface.

6.1.2 Results.

Table 1 shows the success rate. We sort failures into

three categories: timeout indicates that the experiment

duration exceeded 3 minutes without the robot com-

pleting the task, grasp fail indicates that the robot did

not manage to grasp the cube or grasped it with an

alignment error of more than 15 mm, and exit indicates

that the robot exited the experiment area by mistake.

For a value of θI comprised between 10−0.5 and

10−2, the success rate is high at about 85–90 %. For

smaller values, it drops because, at some point, the robot

either does not move any more or performs a movement

repeatedly. When runs are successful, the alignment

error is always small and the duration relatively constant

A Bayesian Tracker for Synthesizing Mobile Robot Behaviour from Demonstration 17

(Figure 19). We believe that a large θI leads to the best

performance because our training trajectories essentially

differ at the beginning, and therefore a large θI allows

for more fine tuning of the behaviour afterwards, by

jumping to a different trajectory that fits better to the

observation.

Most of the failures (60 %) are linked to the robot

stopping indefinitely, due to a fixed or cyclic distribu-

tion on I, τ . We attribute this effect to three causes.

First, motor commands are discretised with a relatively

low resolution, preventing the robot from moving if, for

example, the motor command is 0.4. We could alleviate

this problem through temporal dithering, by probabilis-

tically selecting the nearest integers in proportion to

their distance. The second problem is due to the servo

motors that actuate the gripper. As they are controlled

in position, they do not cope well with rapid changes of

set points. We have observed that they perform the best

when the battery is fully charged, because their speed

is directly proportional to the battery voltage. Third,

contrary to our current model, this early work used a

simplified temporal transition model with no temporal

sub-sampling:

p(τt|τt−1) =

θτ if τt = τt−1

1− 2θτ if τt = τt−1 + 1

θτ if τt = τt−1 + 2

0 otherwise

(15)

This allowed the probability distribution to stay “in

place”, while Equation 5 forces it to “go forward”. The
other types of failure are linked to the robot missing the

cube or exiting the experimentation area.

To test the interpolation capabilities, we have used

only 6 runs out of 20 (dashed black squares in Figure 18,

right) and applied the same test procedure as before,

with θI fixed to 10−0.5. Out of 15 test runs, 11 were suc-

cessful, 3 failed because the robot stopped indefinitely,

and 1 failed because the robot did not align properly

with the cube. In the successful runs, the mean error was

2.1 mm and the mean duration was 99.5 s, which is simi-

lar to the results with 20 training runs. This test shows

that our model is able to interpolate between training

data and that its performances degrade gracefully when

less data are available.

Overall, this experiment shows that our algorithm is

able to reproduce a complex sequence of actions based

on a limited set of demonstrations and to combine, at

replay time, the beginning of a recorded trajectory with

the end of another one.

training positions (robot center)

testing positions (robot center)

trailer

robot orientations:

1 m

± 15°

Fig. 20 The artor robot (top) and the trailer entering experi-
mental setup (bottom).

6.2 Entering a trailer with artor

After demonstrating our algorithm on a desktop research

robot, we show that it can control a 200 kg robot (Fig-

ure 20, top) to do a common task (entering its trailer,

as it can be seen in the video2). It achieves that with

only a handful of demonstrations, which is much faster
than programming the robot by hand.

6.2.1 Protocol.

We recorded 18 trajectories, with the robot in front of the

trailer at 3 different parallel positions, 2 distances, and

3 orientations (Figure 20, bottom). Each recording lasts

about 15 s and inputs/outputs are sampled at 10 Hz. The

inputs are the roll and pitch angles from the imu and 5

processed values from a front-mounted horizontal SICK

lidar. These values are the mean of distances (clipped

to 3 meters) of the following arcs covered by the lidar:

[0°:60°[, [60°:80°[, [80°:100°],]100°:120°],]120°:180°]. The

outputs are the velocities of the left and right wheels.

When recording trajectories, a human driver con-

trolled the robot through a wireless joypad to enter the

2 The video is available at http://stephane.magnenat.net/

videos/artor_entering_trailer.mp4

http://stephane.magnenat.net/videos/artor_entering_trailer.mp4
http://stephane.magnenat.net/videos/artor_entering_trailer.mp4

18 Stéphane Magnenat, Francis Colas

count percentage

success 38 85 %

missed the ramp 6 13 %
failed to stop 1 2 %

Table 2 Results of trailer entering experiment

trailer, which is about 70 cm up from the ground. Under

a close watch, the robot was first brought in front of the

ramp, then aligned to the ramp, then driven straight

until it fully entered the trailer, and finally stopped.

Note that, contrary to similar teleoperation tasks

in the literature (Calinon 2016; Havoutis and Calinon

2019), we do not know the configuration of the robot

nor the relative position of the trailer.

6.2.2 Results.

We set the parameters to the followings: N = 18, θτ =

0.3, θI = 10−8, α = 0.01, σimu = 5, σlidar = 10 cm. We

tested 5 different starting positions (front-left, front-

right, centre-centre, back-left, back-right) within the

area covered by the training data. For each position, we

tested three different orientations (left, centred, right)

and for each orientation we ran 3 trials. In total this

corresponds to 45 trials.

As Table 2 shows, most of the trials were successful.

In case of failure, the robot missed the ramp because it

did not turn enough. This is due to the combined effect of

the averaging of command outputs from all trajectories,

and time-driven action. This led the robot to try to go to

the ramp phase before completing the alignment phase.

It would be interesting to explore whether choosing the

output of the most likely trajectory, rather averaging

over all trajectories, would lead to better results. We

set the parameter α to 0.01 in order to bound the cost

of a sensor reading being totally different than in the

recorded trajectory. We believe that it is important in

this experiment, because when the robot is aligning to

the ramp, the distance perceived by its laser beams

can change from 1 m to 20 m, with a σlidar = 10 cm.

Unfortunately, due to logistic constraints, we were not

able to experimentally test a different output selection

strategy or the effect of different values of α.

7 Discussion

The computational complexity of our algorithm is essen-

tially the product of the number of trajectories and their

average length. This is tractable on current laptops and

embedded systems, for hundreds of trajectories and thou-

sands of time steps, as demonstrated in Section 4.6.3.

Should more data need to be processed, our equations

are also well suited for parallelisation, using simd in-

structions or through a gpu implementation. Therefore,

our method is not limited by the computational load.

As explained in Section 3.3.2, our model interpo-

lates between the observed trajectories according to

their estimated probabilities. A slight limitation of this

approach, as opposed to taking the best command at

each time step, is that, when uncertain, it can lead to

middle-ground solutions between different modes. The

consequence is that, during transient periods such as
accelerations that may happen at slightly different times,

the replay progresses slower with respect to the record-

ings. This might lead to failures later on if there are no

observations able to realign the replay. This effect can be

observed in our capability analysis when the robot has

to go to the red room (see Section 4.6.1). An approach

to limit this issue might be to track the sensorimotor

state of the robot as a time window instead of just a

single time step. For instance, Berlati et al. (2020) re-

solve ambiguity by predicting multiple trajectories with

a recurrent neural network instead of just a single time

step or a single trajectory.

Because our model takes little a-priori knowledge,

its generalisation ability is limited. Given meaningful σk,

it can interpolate but not properly extrapolate, in other

words it cannot “guess” the appropriate action. It can,

however, use parts of different trajectories during execu-

tion. We believe that in many practical scenarios, this is

sufficient as extrapolation is not needed or desired. Note

that the sensor space should be isotropic, otherwise σk
has little meaning. However, despite this theoretical lim-

itation, our algorithm worked well on linearised outputs
of non-linear sensors.

In Section 4, we discussed that in order to take ac-

tions in function of sensory inputs, θτ should be large.

Similarly, to be able to use parts of different trajectories,

θI should also be large. However, to consider past ob-
servations to decide future actions and consider timing

to trigger actions, they should both be small. These

contradictory requirements could only be reconciled by

creating a new layer of abstraction, in which symbols

representing meaningful events and reusable trajectory

blocks could be extracted from raw data as described

in the context of mapping by Beeson et al. (2010). This

is a difficult problem in general, so currently research

has explored the following sub-problems:

– How to select a subset of variables that are relevant

to control the current action of the robot. For ex-

ample, Dong and Williams (2012) has studied how

the target frame of the trajectory changes in the

course of the task. Future research should explore

how to generically identify those variables that sup-

A Bayesian Tracker for Synthesizing Mobile Robot Behaviour from Demonstration 19

port motor commands, as explored by Konidaris

et al. (2012).

– How to build state machines from a set of demonstra-

tions in specific contexts, as by Niekum et al. (2015).

This field should be explored in a more principled

way to find generic and reusable approaches. A key

feature of state machines is the ability to handle

tasks with loops. It would be interesting to explore

whether our algorithm can handle loops by mixing

the current transition model with a tiny bit of a

uniform distribution. Nevertheless, we believe that
in most cases this would dilute the commands too

much, and therefore a symbolic approach to loop

detection is probably more robust.

– How to non-linearly reduce the dimensionality of

sensor values prior to using them as input for the

algorithm. For example, deep neural networks such

as auto-encoders have good properties as shown by

Wang et al. (2016), and could be trained on all

recorded trajectories. This would improve the run-

time computational performance of the algorithm, as

the observation would be of lower dimension. How-

ever, a key feature of our algorithm is that it is a

white box, allowing an easy inspection and under-

standing of its behaviour.

In the light of these different research directions, our

work provides a good basis upon which to explore future

questions. Our meta parameters, while not trivially inter-

pretable, have each explicit, direct and separate effects
on the algorithm. Moreover, they are specified in the

primary space of a white box algorithm. In that sense,

they are easier to comprehend than meta parameters

of more complex algorithms, for example Hierarchical
Dirichlet Processes, which are factors related to a latent

space rather than the operating space of the robot.

We believe that to be useful, future systems should

be as generic and simple as possible and their studies

should provide an understanding of the effect of their

meta-parameters. In particular, in the spirit of Occam’s

razor, we believe that adding layers should be justified

by a general need in a variety of applications and that

these layers should be as simple and non-parametric

as possible. A valuable future work would thus be to

conduct an A/B testing and validate it through a user
study.

8 Conclusion

In this paper, we presented a system, based on a non-

parametric Bayesian model, that is able to perform

multi-step tasks from demonstration. Our specific con-

tributions are:

– On the theoretical side, we have explored how far we

can go with an approach that makes minimal assump-

tions on the application scenario. We have shown

that as long as the latent space is of low dimension-

ality with respect to the number of demonstrations,

our approach works well and is relatively robust to

changes in the value of the meta parameters.

– On the robotics side, we have demonstrated the

system on a task of a research robot that proved

hard to program by hand, and on a real task of a

field robot.

– On the software side, we provide an open-source

implementation for the research community and the

industry to experiment with and deploy on their own

robots.

Compared to related work, our system is easier to

deploy because it has fewer meta parameters, while still

providing good performance in the case of simple tele-

operated robots. We believe that such a system can be of

tremendous help for developing and deploying robotics

applications. Indeed, the current requirement of choosing

by hand between many different approaches and then

exploring their many parameters is a major obstacle to

the deployment of programming by demonstration, and

more generally robotics technology.

Acknowledgements This work was mostly conducted at the
Autonomous Systems Laboratory of ETH Zürich. We thank
Philipp Krüsi for his help conducting the experiments, and
Cédric Pradalier for his insightful comments on the algorithm.
We thank the Mobots group of Francesco Mondada at EPFL
for the access to the marXbot robot.

This work was supported by the NIFTi (FP7-247870),
myCopter (FP7-266470) and Noptilus (FP7-270180) European
projects and by Willow Garage through a 3-month visiting
researcher grant.

References

P. Abbeel and A. Y. Ng. Apprenticeship learning via in-
verse reinforcement learning. In Proceedings of the Twenty-
First International Conference on Machine Learning, page 1,
2004.

Pieter Abbeel, Adam Coates, and Andrew Y. Ng. Autonomous
helicopter aerobatics through apprenticeship learning. In-

ternational Journal of Robotics Research, 29(13):1608–1639,
November 2010. doi: 10.1177/0278364910371999.

Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett
Browning. A survey of robot learning from demonstration.
Robotics and Autonomous Systems, 57:469–483, 2009.

Patrick Beeson, Joseph Modayil, and Benjamin Kuipers. Fac-
toring the Mapping Problem: Mobile Robot Map-building
in the Hybrid Spatial Semantic Hierarchy. The Interna-

tional Journal of Robotics Research, 29(4):428 –459, April
2010. doi: 10.1177/0278364909100586.

A. Berlati, O. Scheel, L. D. Stefano, and F. Tombari. Ambigu-
ity in sequential data: Predicting uncertain futures with

20 Stéphane Magnenat, Francis Colas

recurrent models. IEEE Robotics and Automation Letters,
5(2):2935–2942, 2020. doi: 10.1109/LRA.2020.2974716.

Michael Bonani, Valentin Longchamp, Stéphane Magnenat,
Philippe Rétornaz, Daniel Burnier, Gilles Roulet, Florian
Vaussard, Hannes Bleuler, and Francesco Mondada. The
marxbot, a miniature mobile robot opening new perspec-
tives for the collective-robotic research. In Proc. of the

IEEE/RSJ International Conference Intelligent Robots and

Systems (IROS), pages 4187–4193. IEEE, 2010.
Sylvain Calinon. A tutorial on task-parameterized movement

learning and retrieval. Intelligent Service Robotics, 9(1):
1–29, 2016. doi: 10.1007/s11370-015-0187-9.

Sylvain Calinon and Dongheui Lee. Learning Control. In
Ambarish Goswami and Prahlad Vadakkepat, editors, Hu-

manoid Robotics: A Reference, pages 1–52. Springer Nether-
lands, 2016. doi: 10.1007/978-94-007-7194-9 68-1.

Sylvain Calinon, Florent Guenter, and Aude G. Billard. On
learning, representing, and generalizing a task in a hu-
manoid robot. Systems, Man, and Cybernetics, Part B: Cy-

bernetics, IEEE Transactions on, 37(2):286–298, 2007. doi:
10.1109/TSMCB.2006.886952.

Sylvain Calinon, Florent D’Halluin, Eric L. Sauser, Darwin G.
Caldwell, and Aude G. Billard. Learning and reproduction
of gestures by imitation. Robotics & Automation Magazine,

IEEE, 17(2):44–54, 2010. doi: 10.1109/MRA.2010.936947.
Sotirios P. Chatzis, Dimitrios Korkinof, and Yiannis Demiris.

A nonparametric Bayesian approach toward robot learning
by demonstration. Robotics and Autonomous Systems, 60
(6):789–802, June 2012. doi: 10.1016/j.robot.2012.02.005.

Nutan Chen, Maximilian Karl, and Patrick van der Smagt.
Dynamic movement primitives in latent space of time-
dependent variational autoencoders. In Humanoid Robots

(Humanoids), 2016 IEEE-RAS 16th International Confer-

ence on, pages 629–636. IEEE, 2016.
Christian Daniel, Gerhard Neumann, and Jan Peters. Learn-

ing concurrent motor skills in versatile solution spaces.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on, pages 3591–3597. IEEE, 2012.

J. DelPreto, J. I. Lipton, L. Sanneman, A. J. Fay, C. Fourie,
C. Choi, and D. Rus. Helping robots learn: A human-
robot master-apprentice model using demonstrations via
virtual reality teleoperation. In Proc. of the IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 10226–10233, 2020. doi: 10.1109/ICRA40945.2020.
9196754.

Shuonan Dong and Brian Williams. Learning and recog-
nition of hybrid manipulation motions in variable envi-
ronments using probabilistic flow tubes. International
Journal of Social Robotics, pages 1–12, 2012. doi: 10.1007/
s12369-012-0155-x.

Paul Furgale and Timothy D. Barfoot. Visual teach and repeat
for long-range rover autonomy. Journal of Field Robotics,
27(5):534–560, September 2010. doi: 10.1002/rob.20342.

Daniel H. Grollman and Odest Chadwicke Jenkins. Can we
learn finite state machine robot controllers from interactive
demonstration? In Olivier Sigaud and Jan Peters, editors,
From Motor Learning to Interaction Learning in Robots, vol-
ume 264 of Studies in Computational Intelligence, pages 407–
430. Springer, 2010. doi: 10.1007/978-3-642-05181-4 17.

Ioannis Havoutis and Sylvain Calinon. Learning from demon-
stration for semi-autonomous teleoperation. Autonomous

Robots, 43:713–726, 2019.
Guillaume Infantes, Malik Ghallab, and Félix Ingrand. Learn-

ing the behavior model of a robot. Autonomous Robots, 30:
157–177, 2011. doi: 10.1007/s10514-010-9212-1.

Maximilian Karl, Maximilian Soelch, Philip Becker-Ehmck,
Djamel Benbouzid, Patrick van der Smagt, and Justin
Bayer. Deep variational Bayes filters: Unsupervised learn-
ing of state space models from raw data. In 5th Inter-

national Conference on Learning Representations (ICLR),
Toulon, 2017.

E. Keogh, S. Chu, D. Hart, and M. Pazzani. Segmenting time
series: A survey and novel approach. In Data mining in

time series databases. World Scientific, 2004.
S. M. Khansari-Zadeh and A. Billard. Learning stable non-

linear dynamical systems with Gaussian Mixture Models.
IEEE Transactions on Robotics, 27:943–957, 2011.

Nathan Koenig and Maja J. Matarić. Robot life-long task
learning from human demonstrations: a Bayesian approach.
Autonomous Robots, 41:1173–1188, 2017.

George Konidaris, Scott Kuindersma, Roderic Grupen, and
Andrew Barto. Robot learning from demonstration by con-
structing skill trees. The International Journal of Robotics

Research, 31(3):360–375, 2012.
J. Loula, K. Allen, T. Silver, and J. Tenenbaum. Learning

constraint-based planning models from demonstrations.
In IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2020.
Kirk MacTavish, Michael Paton, and Timothy D. Barfoot.

Selective memory: Recalling relevant experience for long-
term visual localization. Journal of Field Robotics, 35(8):
1265–1292, November 2018. doi: 10.1002/rob.21838.

Stéphane Magnenat, Markus Waibel, and Antoine Beyeler.
Enki – an open source fast 2d robot simulator. https:

//github.com/enki-community/enki, 2009.
Stéphane Magnenat, Roland Philippsen, and Francesco Mon-

dada. Autonomous construction using scarce resources in
unknown environments. Autonomous Robots, 33:467–485,
2012a. doi: 10.1007/s10514-012-9296-x.

Stéphane Magnenat, Cédric Pradalier, and Francis Colas.
Towards non-parametric bayesian learning of robot be-
haviors from demonstration. In Bayesian Nonparametric
Models For Reliable Planning And Decision-Making Under

Uncertainty, NIPS 2012, 2012b.
Jérome Maye, Rudolph Triebel, Luciano Spinello, and Roland

Siegwart. Bayesian on-line learning of driving behaviors.
In Proc. of the IEEE International Conference on Robotics
and Automation (ICRA), pages 4341–4346. IEEE, 2011.
doi: 10.1109/ICRA.2011.5980414.

F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci,
A. Klaptocz, S. Magnenat, J.-C. Zufferey, D. Floreano,
and A. Martinoli. The e-puck, a robot designed for ed-
ucation in engineering. In Proc. of the 9th Conference on
Autonomous Robot Systems and Competitions, pages 59–65,
2009.

Manuel Mühlig, Michael Gienger, and Jochen J. Steil. In-
teractive imitation learning of object movement skills.
Autonomous Robots, 32(2):97–114, 2012. doi: 10.1007/
s10514-011-9261-0.

Andrew Y Ng and Stuart J Russell. Algorithms for inverse
reinforcement learning. In ICML, volume 1, page 2, 2000.

Scott Niekum, Sarah Osentoski, George Konidaris, Sachin
Chitta, Bhaskara Marthi, and Andrew G. Barto. Learning
grounded finite-state representations from unstructured
demonstrations. The International Journal of Robotics

Research, 34(2):131–157, February 2015. doi: 10.1177/
0278364914554471.

Peter Pastor, Mrinal Kalakrishnan, Franziska Meier, Freek
Stulp, Jonas Buchli, Evangelos Theodorou, and Stefan
Schaal. From dynamic movement primitives to associative
skill memories. Robotics and Autonomous Systems, 61(4):

https://github.com/enki-community/enki
https://github.com/enki-community/enki

A Bayesian Tracker for Synthesizing Mobile Robot Behaviour from Demonstration 21

351–361, April 2013. doi: 10.1016/j.robot.2012.09.017.
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

Cédric Pradalier and Pierre Bessière. Perceptual navigation
around a sensori-motor trajectory. In Proc. of the IEEE In-
ternational Conference on Robotics and Automation (ICRA),
volume 4, pages 3831–3836. IEEE, 2004.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes
for Machine Learning. MIT Press, 2006.

Frédéric Rochat, Patrick Schoeneich, Michael Bonani,
Stéphane Magnenat, Francesco Mondada, Hannes Bleuler,
and Christoph Hürzeler. Design of magnetic switchable de-
vice (MSD) and applications in climbing robot. In Proc. of
the 13th International Conference on Climbing and Walking

Robots, pages 375–382. World Scientific, 2010.
Stuart Russell. Learning agents for uncertain environments

(extended abstract). In Proceedings of the Eleventh Annual

Conference on Computational Learning Theory - COLT’ 98,
pages 101–103, 1998. doi: 10.1145/279943.279964.

J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow,
J. Pan, S. Patil, K. Goldberg, and P. Abbeel. Motion
planning with sequential convex optimization and convex
collision checking. The International Journal of Robotics

Research, 33:1251–1270, 2014.
Bruno Siciliano and Oussama Khatib, editors. Springer hand-

book of robotics. Springer, 2016.
N. Soans, E. Asali, Y. Hong, and P. Doshi. Sa-net: Robust

state-action recognition for learning from observations. In
Proc. of the IEEE International Conference on Robotics and

Automation (ICRA), pages 2153–2159, 2020. doi: 10.1109/
ICRA40945.2020.9197393.

Dizan Vasquez, Billy Okal, and Kai Arras. Inverse Rein-
forcement Learning algorithms and features for robot
navigation in crowds: An experimental comparison. In
IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 1341 – 1346, 2013. doi:
10.1109/IROS.2014.6942731.

Yasi Wang, Hongxun Yao, and Sicgheng Zhao. Auto-encoder
based dimensionality reduction. Neurocomputing, 184:232–
242, April 2016. doi: 10.1016/j.neucom.2015.08.104.

Christopher KI Williams and Carl Edward Rasmussen. Gaus-
sian processes for regression. In Advances in neural infor-

mation processing systems, pages 514–520, 1996.
Xianghai Wu and Jonathan Kofman. Human-inspired robot

task learning from human teaching. In Proc. of the

IEEE International Conference on Robotics and Automa-

tion (ICRA), pages 3334–3339. IEEE, 2008. doi: 10.1109/
ROBOT.2008.4543719.

L. Xie, A. Markham, and N. Trigoni. Snapnav: Learning map-
less visual navigation with sparse directional guidance and
visual reference. In Proc. of the IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 1682–1688,
2020. doi: 10.1109/ICRA40945.2020.9197523.

W. Yang, N. Strokina, N. Serbenyuk, R. Ghabcheloo, and
J. Kämäräinen. Learning a pile loading controller from
demonstrations. In Proc. of the IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 4427–4433,
2020. doi: 10.1109/ICRA40945.2020.9196907.

	Introduction
	Related Work
	Model
	Capability analysis
	Comparison with Gaussian processes
	Deployment on real mobile robots
	Discussion
	Conclusion

